1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
stormydartnell edited this page 2025-04-13 03:49:13 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses support learning to improve reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential differentiating function is its reinforcement knowing (RL) step, which was utilized to improve the design's actions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately enhancing both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's geared up to break down complicated queries and reason through them in a detailed way. This guided thinking process allows the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually caught the market's attention as a versatile text-generation model that can be incorporated into numerous workflows such as representatives, logical thinking and data interpretation tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion parameters, making it possible for effective inference by routing questions to the most appropriate expert "clusters." This method permits the model to specialize in different problem domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective models to simulate the habits and reasoning patterns of the bigger DeepSeek-R1 model, using it as a teacher model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and examine models against key security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit increase, create a limitation boost demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for it-viking.ch content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, prevent hazardous content, and examine designs against crucial safety requirements. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The model detail page supplies vital details about the model's abilities, rates structure, and application guidelines. You can find detailed usage directions, including sample API calls and code bits for combination. The design supports various text generation jobs, content development, code generation, and question answering, utilizing its reinforcement finding out optimization and CoT thinking capabilities. The page likewise includes deployment options and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, select Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a number of instances (between 1-100). 6. For Instance type, choose your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service function permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you may desire to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the deployment is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive user interface where you can try out various triggers and adjust design criteria like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal outcomes. For instance, content for inference.

This is an outstanding method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play area offers instant feedback, helping you comprehend how the model reacts to numerous inputs and letting you tweak your triggers for optimum results.

You can rapidly evaluate the model in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform inference using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends a demand to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 hassle-free methods: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to help you select the method that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser displays available models, with details like the provider name and design capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card reveals key details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the design details page.

    The model details page consists of the following details:

    - The design name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the design, it's advised to evaluate the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the instantly created name or create a customized one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of instances (default: 1). Selecting suitable circumstances types and counts is crucial for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the design.

    The release process can take several minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this moment, the model is ready to accept inference requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is complete, you can conjure up the design using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Tidy up

    To prevent unwanted charges, finish the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the design using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases.
  5. In the Managed deployments section, locate the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious services utilizing AWS services and sped up compute. Currently, he is focused on establishing methods for fine-tuning and enhancing the reasoning efficiency of big language designs. In his leisure time, Vivek enjoys treking, enjoying motion pictures, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building solutions that help consumers accelerate their AI journey and unlock organization value.